Covert Distributed Processing with Computer Viruses

Steve R. White
IBM Thomas J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598

Abstract. Computer viruses can be used by their authors to harness the resources of in-
Sected machines for the author's computation. By doing so without the permission or
knowledge of the machine owners, viruses can be used to perform covert distributed proc-
essing. We outline the class of problems for which covert distributed processing can be
used. A brute-force attack on cryptosystems is one such problem, and we give estimates of
the time required to complete such an attack covertly.

1. Introduction

Given the large aggregate computing power in the world, harnessing it to work
on a single problem is an attractive idea. Systems which usc the idle processing
power of a collection of machines have been built, and shown to work well [1].
Previously, these have operated under the assumption that the owners of ma-
chines must give explicit permission for this use of their computing power.
Computer viruses [2] can be inherently covert programs, which perform their
actions without any explicit permission or awareness on the part of the owners
of the machines that they use. This raises the possibility that viruses can be used
for distributed processing tasks, perhaps in spite of the desires of the owners of
the machines being used.

2. Covert Distributed Processing

Computer viruses can carry virtually any kind of task with them [3], [4]. In
particular, they can use their ability to hide within innocuous programs to spread
a distributed computing task among many users and many computers. Processes
and information can be distributed unwittingly by users in the normal process of
sharing other information. This paper gives an example of how a large number
of computers can be harnessed as a distributed processor. This can be done
covertly, without the explicit cooperation of those involved.

Our distributed processing virus is written to work on a part of the problem to
be solved, and to create offspring viruses that also work on the problem. De-

Copyright (c) 1998, Springer-Verlag



617

pendmg upon the communication topology of the distributed system, and on the
virus’ knowledge of it, they could cooperate in any number of ways to solve the
problem.

Here, though, we make the fewest possible assumptions about the virus’ know-
ledge of the system’s connectivity. We assume that a virus v can create a virus
v, and that v can give information to v’ about the progress that v has made on
the solution of the problem. We do not assume that v and v’ can communicate
thereafter. The computational work is spread only as the viruses themselves
spread.

With these communication assumptions, our distributed processing virus lends
itself to working on tree-structured algorithms, in which offspring processes are
initialized by parent processes, and work independently thereafter. This style of
computation resembles the Unix! “fork” operation, with the restriction that the
forked tasks have no intertask communication. Markov chain calculations are
an example of a problem that fits this paradigm.

One of the goals of the virus is to obtain as much resource as possible to work
on its problem (CPU time, disk space, etc.), while avoiding detection. The proper
strategy will depend upon the details of the operating system used. In the type
of single-tasking operating system used in most personal computers, for instance,
the best strategy may be to “wake up” periodically and examine the state of the
processor. If no active application task is running (i.e. the machine is idle), the
virus task can be started. It would give up the processor as soon as any other
system action began, to avoid detection due to slow system rcsponse. In a typical
multi-tasking operating system, the virus task may run as a low-priority back-
ground task, and let the operating system handle this kind of resource allocation.

3. Covert Information Distribution

All viruses carry information with them, so designing a virus to distribute infor-
mation covertly is straightforward. The information could simply be contained
in the body of the virus, and each user whose system becomes infected could re-
cover the information by peeking at the object code of the virus. Alternatively,
the virus could respond to a particular keyboard sequence by displaying the in-
formation, so it is available more readily.

This technique can be used to retrieve results obtained by the various offspring
viruses. Once a particular virus arrives at a result, it can spawn an “information
carrying” virus that propagates through the distributed system. Eventually, it
will reach the author of the covert task. It is possible to hide the result from
owners of intermediate machines as well. This is done by having the virus that
arrives at the result encrypt it with a public key before spawning the “information

! Unix is a trademark of AT&T.

Copyright (c) 1998, Springer-Verlag



618

carrying” virus. Since the author of the covert task can keep the private key se-
cret, only the author can decrypt the result.

4. Example: Brute-Force Attack on a Cryptosystem

Brute-force attacks on cryptosystems are attacks that require very large compu-
tational resources to mount. One such attack involves work by seeing if random
keys can decrypt known ciphertext to known plaintext [4]. Another involves
factoring large numbers [5], [6]. Several such attacks on cryptosystems have
been proposed. They generally involve a substantial cost and/or a substantial
engineering effort to build special-purpose hardware.

The idea of using computer viruses for such an attack was first proposed by
Quisquater and Desmedt [7]. They suggested that a virus could both guess keys
at random, and spawn other viruses that do the same thing. From the preceding
discussion, it is clear that such a calculation is within the paradigm of covert
distributed processing.

We consider implementing this attack by writing a virus that spreads between
small computers which are not under any central control. Unlike previous
methods of implementing such an attack, this one can be done (a) at virtually no
cost (other than the cost of developing the appropriate virus); and (b) with a
strong expectation of anonymity, since it is very difficult to trace a virus back to
its author in this environment. ‘

We can get a (very rough) idea of a lower bound on the time required for such
an attack by making some estimates. We assume that we are attacking DES,
which has a key space of size 2%, and that the typical machine is a fairly fast
personal computer.

(Typical software DES rate) ~ 6.3 x 104 Bytes/sec
.. (Typical rate of keys tried on one machines) =~ 2.5 x 10'° keys/year
(Number of machines) ~ 10’
.. (Average rate of keys tried on all machines) ~ 2.5 x 107 keys/year
(Average number of guesses required) = 2 keys ~ 6.4 x 10'° keys
.. (Time required) ~ 0.26 years

This is a rather severe underestimate. We have assumed that the virus will infect
every machine, that the virus will have exclusive use of the machine all the time,
that the time required for the virus to propagate is negligible, and that this is the
only such virus in circulation. These assumption are likely to be off by at least
four orders of magnitude.

Copyright (c) 1998, Springer-Verlag



619

Nonetheless, it is instructive to have come this close! And, these estimates are
based on comparatively simple 1989 technology. As the aggregate computing
power in the world increases dramatically over the next decade, this covert use
of it may become more of a threat.

Acknowledgements

The author thanks Yvo Desmedt, William Arnold, Steve Weingart, Frederica
Darema, and Kevin McAuliffe for useful conversations.

Bibliography

(1]

[2]

(3]

(4]

- [5]

(6]

(7]

J.F. Shoch, J.A. Hupp, “The ‘Worm’ Programs - Early Experience with a
Distributed Computation,” CACM 25 (March 1982) pp. 172-180

F. Cohen, “Computer Viruses: Theory and Experiment,” Computers & Se-
curity 6 (1987) pp. 22-35

F. Cohen, “On the Implications of Computer Viruses and Methods of De-
fense,” Computers & Security 7 (1988) pp. 167-184

W. Diffie, M.E. Hellman, “Exhaustive Cryptanalysis of the NBS Data En-
cryption Standard,” Computer, Vol. 10, No. 6 (June 1977) pp. 74-84

T.R. Caron, R.D. Silberman, “Paralle! Implementation of the Quadratic
Sieve,” J. Supercomputing 1 (April 1988) pp. 273-290

A.K. Lenstra, M.S. Manasse, “Factoring By Electronic Mail,” Proc.
Eurocrypt ‘89, Houthalen, Belgium (April 10-12, 1989) In press

J.-J. Quisquater, Y. Desmedt, “Watch for the Chinese Loto and the Chinese
Dragon,” informal paper, Crypto ‘87 (To be published)

Copyright (c) 1998, Springer-Verlag



